

Kolkata International Poultry Fair India's Biggest Poultry Mela Meet the entire Indian Poultry Industry...

Role of Mycotoxins in Disease Development in Poultry

Swamy Haladi, MVSc., PhD

Global Technical Manager, Feed Safety

Feed Safety across the Value Chain

Feed Safety GAP analysis \rightarrow Llab Services \rightarrow Technical Solutions \rightarrow Dosing Equipment

Follow @GroIntel www.gro-intelligence.com

Mycotoxins' Human and Economic Toll **Regulations** aim Drought conditions stress Naturally occurring to limit mycotoxin plants, leaving them molds leave poisons concentrations in food. susceptible to aflatoxin called mycotoxins on contamination. corn and other crops. Consuming doses of aflatoxin above 1 part per million is life-threatening. Gro data, such as Mycotoxins can cause disease and death in humans and animals Mycotoxin-related damage costs US farmers and livestock producers up to \$1 billion a year. NDVI anomalies and soil properties, can help monitor and have been linked to publicrisk of mycotoxin health crises around the world. damage to crops. This work is licensed under a Creative Commons Attribution-NonCommercial-1)=3 NoDerivatives 4.0 International License Sources: World Health Organization, Council for Agricultural Science and Technology, Gro Intelligence.

Economic impact of mycotoxins

2022 Mycotoxin Contamination in India

Mycotoxin	Total	Total Contaminated	% conta- mination	Average	Median	Minimum	Maximum
			91				
AFLA	1433	1301		43	44	22	3
ZEA	47	43	91	102	64	79	28
OCHRA	322	279	87	16	19	11	2
FUM	198	137	69	1611	1264	1100	250
T2HT2	135	10	7.4	37	51	15	10

Mycotoxin distribution in Indian raw materials and feeds

Types of mycotoxin toxicity

rouw nutrition

- Acute toxicity describes the adverse effects of a mycotoxin that result either from a single exposure or from multiple exposures in a short period of time. To be described as acute toxicity, the adverse effects should occur within 14 days of the administration of the substance.
- **Subacute toxicity** (repeat dose toxicity) focuses on adverse effects occurring after administration of a single dose or multiple doses of a mycotoxin per day for a period of 14–28days.
- Chronic toxicity describes the development of adverse effects as a result of long-term exposure of poultry to a mycotoxin or groups of mycotoxins.

Adverse effects of mycotoxins in Poultry

AF: Enlarged and pale liver

OTA: Enlarged kidneys

T-2 toxin: Oral lesions

AF/OTA/*Fusarium*: diarrhea/wet litter

DON/T-2: Intestinal lesions

T-2/FBs: Increased intestinal bacteria colonisation

Why chronic toxicity is hard to diagnose?

- No clear animal symptoms
- Low levels of Multiple mycotoxins in the feed
- Limited number of mycotoxins analysed in the feed
- Masked mycotoxins in the feed
- Mycotoxin Interactions (additive/synergy)

The intestinal tract is the 1st site of contact (even at low mycotoxin concentrations) Intestinal epithelial cells are the 1st target cells affected by all mycotoxins Intestinal epithelial cells create the essential barrier between gut lumen and body tissue

Source: Prof. Fink-Gremmels

12

Structure of intestinal villi

Mycotoxin impact on gut health

13

Mycotoxins	Adverse effects
Aflatoxins	 the disruption of intestinal barrier function; poor intestinal cell proliferation and cell death; compromised intestinal immunity
Ochratoxins	 altered intestinal nutrient absorption; increased intestinal permeability; intestinal cell death; decreased villi height
T-2 toxin / DON	 poor intestinal water and glucose absorption (diarrhea); necrotic lesions in GIT; shortening of intestinal villi (poor nutrient absorption); increased intestinal permeability (lowered tight junction proteins); decreased IL-8* cytokine (responsible for pathogen removal); decreased mucin production
Fumonisins	 decreased cell viability and proliferation; altered intestinal barrier integrity by suppressing tight junction protein; increased intestinal permeability; increased mucin secretion/depletion of goblet cells; altered gut immunity

Epithelial cells and tight junction (TJ): the life-saving intestinal barrier

DON affects the TJ complex resulting in increased permeability (loss of epithelial integrity)

Akbari, Fink-Gremmels et a., 2015

Clinical effect: Trans-epithelial Transfer of Salmonella typhimurium

Impact of mycotoxins on immune responses

Immune system

Innate immunity	Adaptive immunity
First line defense Ready to be mobilized upon infection	Second line defense Requires time (up to days) to react to infection
Non-specific Reacts to broad range of infections / organisms	Antigen specific
No immunological memory	Immunological memory
 Physical barriers Skin Mucosal membranes Chemical barriers pH Enzymes Cellular barriers Phagocytes incl. macrophages Natural killer cells Granulocytes 	<complex-block><complex-block></complex-block></complex-block>

Immune system of poultry

Source: canadianpoultrymag.con

Junior et al., 2018

Immune system development in poultry

Impact of mycotoxins on immune responses

Mycotoxins	Adverse effects
Aflatoxins	increased gene expression of IL-6, reduced complement and interferon, suppressed macrophagic phagocytosis, suppressed DTH, reduced weight of thymus and bursa, poor antibody titers, vaccination failures
Ochratoxins	regression of lymphoid organs, lymphocyte depletion, poor DTH, antibody response is affected to a lesser extent
T-2 toxin	regression of bursa of Farbricius, leucopenia, proteinemia, immunosuppression, increased disease incidences
DON	interferes with DNA, RNA and protein synthesis, immunosuppression, poor antibody titers, increased disease incidences
Fumonisins	Thymus atrophy, decreased spleen weight, increased susceptibility to E. coli and other bacteria

Multiple mycotoxins lowered antibody titre against NCD & IBD

	NCD titr	es, log ₁₀	IBDV titres, log ₁₀		
Treatment	day 21	day 42	day 21	day 42	
Control	1.36 a	1.07 a	1103 a	1625 ª	
Multiple mycotoxins*	0.96 b	0.51 ^b	700 b	981 ^b	
<i>p</i> -value	0.006	<0.0001	< 0.0001	0.0001	

*250ppb each of AF, OTA and T-2 toxin Malathi et al., 2019

T-2 toxin Reduces the Efficacy of Anticoccidial Drug in Chicken

Protocol

Results

<u>Day 7 of age:</u>
Oral inoculation with Eimeria tenella
Day 15 of age:
Necropsy
Day 6 to 15 of age:
Ingestion of food with Lasalocid
(75 ppm) ± T-2 toxin

Treatment	Mortality	Lesion
None	90 %	100 %
Lasalocid	0 %	0 %
+ T-2 (6 ppm)	35 %	100 %
+ T-2 (1 ppm)	5 %	45 %
+ T-2 (0.5 ppm)	0 %	10 %

Source: Varga and Vanyi, 1992

What is the best way to diagnose mycotoxin issues?

Take into account all the following factors;

- History of raw material sourcing
- Mycotoxin analysis report
- Poultry symptoms
- Post-mortem findings

Swamy, 2020

- It is hard to differentiate the negative effects of mycotoxins on gut health and immune responses in poultry.
- Leaky gut caused by mycotoxins can initiate cascade of events leading to increased susceptibility of birds against pathogens.
- Some mycotoxins can affect immune cells directly leading to lowered Cell- and antibody-mediated immune responses.
- Mycotoxin Risk Management strategy combining mycotoxin binding concept along with means of improving gut health and immunity are of paramount importance in not only enhancing animal health and performance but also improving the bottom line of business operations.

Thank You

Happy to Answer Any Questions

